
Pre-training under infinite compute
Konwoo Kim∞, Suhas Kotha∞, Percy Liang, Tatsu Hashimoto

1

Motivation

Language modeling works well these days, largely thanks to pre-training models
by fitting the distribution of internet text

2

Pre-trained model

Motivation

Better pre-trained models provide incredibly useful initializations of intelligence
that can be used for many real world tasks

3

Motivation

Better pre-trained models provide incredibly useful initializations of intelligence
that can be used for many real world tasks

4

GPT-3 was necessary
for models that can do

in-context learning

Motivation

Better pre-trained models provide incredibly useful initializations of intelligence
that can be used for many real world tasks

5

GPT-3 was necessary
for models that can do

in-context learning

Anthropic’s base models
were necessary to benefit

from alignment

Motivation

Better pre-trained models provide incredibly useful initializations of intelligence
that can be used for many real world tasks

6

GPT-3 was necessary
for models that can do

in-context learning

DeepSeek V3 was
necessary for models
that reason after RL

Anthropic’s base models
were necessary to benefit

from alignment

Motivation

Better pre-trained models provide incredibly useful initializations of intelligence
that can be used for many real world tasks

7

GPT-3 was necessary
for models that can do

in-context learning

DeepSeek V3 was
necessary for models
that reason after RL

Anthropic’s base models
were necessary to benefit

from alignment

?

?
?

?

Current scaling practice

Pre-training is expensive and has historically focused on training the best model
subject to various compute constraints, resulting in predictable scaling recipes

8

Current scaling practice

Pre-training is expensive and has historically focused on training the best model
subject to various compute constraints, resulting in predictable scaling recipes

Example 1: Train compute
Chinchilla scaling: for a fixed compute
budget, set parameter count N and
token count D in a 1:20 ratio with
no repetitions

9Kaplan et al, 2020 ; Hoffman et al, 2022

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2203.15556

Current scaling practice

Pre-training is expensive and has historically focused on training the best model
subject to various compute constraints, resulting in predictable scaling recipes

Example 2: Inference compute
To lower inference costs with small
models, common to over-train models
with 1:2000 parameter to token ratio

10Sardana et al, 2025, Llama, Qwen, ...

https://arxiv.org/abs/2401.00448

Generally, current pre-training practice tells us how to
pre-train given finite compute and as much data as needed

11

Problem: running out of pre-training data

The amount of data available on the internet grows quite slowly (approximately
3% per year), and we can not assume that we will always have access to more

12Villalobos et al, 2024

https://epoch.ai/blog/will-we-run-out-of-data-limits-of-llm-scaling-based-on-human-generated-data

Many domains are naturally data-constrained

Beyond text, many distributions genuinely have few samples

13

Rare languages (i.e.
Basque documents)

Biology (i.e.
DNA sequences)

Agents (i.e. web navigation
trajectories)

Personalization (i.e.
personal information)

Robotics (i.e.
robot trajectories)

Observation: compute continues to increase

On the other hand, compute continues to rapidly increase, with pre-training
spending 5x more compute per year

14Villalobos et al, 2024 Sevilla and Roldán, 2024

https://epoch.ai/blog/will-we-run-out-of-data-limits-of-llm-scaling-based-on-human-generated-data
https://epoch.ai/blog/%20training-compute-of-frontier-ai-models-grows-by-4-5x-per-year

Even if current pre-training practice tells us how to best
use limited compute for unlimited data …

15

It gives little guidance on how to use compute when
constrained by available data

16

How should one approach pre-training when
constrained by data and unconstrained by compute?

17

Pre-training under infinite compute

How should one approach pre-training when constrained by data and unconstrained by
compute?

This is not very different from ML before the modern LLM era
- classical statistical learning analyzes algorithms with no compute constraints
- benchmarks like MNIST and Penn Tree Bank often have few samples

18

Pre-training under infinite compute

How should one approach pre-training when constrained by data and unconstrained by
compute?

This is not very different from ML before the modern LLM era
- classical statistical learning analyzes algorithms with no compute constraints
- benchmarks like MNIST and Penn Tree Bank often have few samples

However, people are really
willing to spend more compute
to pre-train better models…

19

Pre-training under infinite compute

How should one approach pre-training when constrained by data and unconstrained by
compute?

We revisit data efficiency with a fresh perspective from scaling laws

We find that current approaches overfit and can not leverage more compute, even
if it was available

We design scaling recipes that monotonically decrease loss with clean power law
scaling. We estimate the best possible performance via the asymptote of our scaling
laws, predicting whether this algorithm will be useful in the future

20

Outline

21

1. Current approaches overfit (epoching + parameter scaling)

2, 3, 4. Designing better recipes in infinite compute utopia (regularization, ensembling, limits)

5, 6, 7. Demonstrating practicality of our interventions (data scaling, distillation, evals)

0. Setting

22

0. Setting

To simulate a data-constrained future, we limit our algorithms to a small number
of pre-training tokens (D = 200M), ablated in Section 7

23

0. Setting

To simulate a data-constrained future, we limit our algorithms to a small number
of pre-training tokens (D = 200M), ablated in Section 7

We use an optimized pre-training recipe (transformer, AdamW, etc) via Marin

24

https://marin.community/

0. Setting

To simulate a data-constrained future, we limit our algorithms to a small number
of pre-training tokens (D = 200M), ablated in Section 7

We use an optimized pre-training recipe (transformer, AdamW, etc) via Marin

Since we are assuming infinite compute, we train much larger models than
normal, defaulting to a N = 300M parameter model (30x larger than Chinchilla)

25

https://marin.community/

0. Setting

To simulate a data-constrained future, we limit our algorithms to a small number
of pre-training tokens (D = 200M), ablated in Section 7

We use an optimized pre-training recipe (transformer, AdamW, etc) via Marin

Since we are assuming infinite compute, we train much larger models than
normal, defaulting to a N = 300M parameter model (30x larger than Chinchilla)

We measure validation loss as this strongly correlates with pre-training quality
[Section 6 ; Chen et al, 2025 ; Gadre et al, 2024 ; Thrush et al, 2025]

26

https://marin.community/
https://arxiv.org/abs/2410.08527
https://arxiv.org/abs/2403.08540
https://arxiv.org/abs/2409.05816

0. Setting

To simulate a data-constrained future, we limit our algorithms to a small number
of pre-training tokens (D = 200M), ablated in Section 7

We use an optimized pre-training recipe (transformer, AdamW, etc) via Marin

Since we are assuming infinite compute, we train much larger models than
normal, defaulting to a N = 300M parameter model (30x larger than Chinchilla)

We measure validation loss as this strongly correlates with pre-training quality
[Section 6 ; Chen et al, 2025 ; Gadre et al, 2024 ; Thrush et al, 2025]

We do not allow for any human supervision (prompting, reward functions,
external data, external models, etc.)

27

https://marin.community/
https://arxiv.org/abs/2410.08527
https://arxiv.org/abs/2403.08540
https://arxiv.org/abs/2409.05816

1. Current recipes

28

how well do existing methods handle data constraints?

1. Current recipes

We start by considering some existing data-constrained pre-training recipes such
as repeating the data [Muennighoff et al, 2023] and increasing parameter count
[Kaplan et al, 2020 ; Hoffman et al, 2022]

29

https://arxiv.org/abs/2305.16264
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2203.15556

1a. Current recipes: epoching

If we repeat the data too many times, we start overfitting

30

1b. Current recipes: epoching + parameter scaling

Increasing the parameter count isn’t very helpful, even after tuning epoch count

31

1b. Current recipes: epoching + parameter scaling

Is this the best possible performance under infinite compute?

32

2. Regularized parameter scaling

33

can we get stronger/monotone/clean scaling?

2. Regularized parameter scaling

We find that to get the best possible performance from these over-parameterized,
epoched models, it is critical to regularize pre-training with much higher weight
decay.

34

2. Regularized parameter scaling

We first jointly tune learning rate, epoch count, and weight decay for each
parameter count by performing an expensive search for locally optimal
hyper-parameters

35

2. Regularized parameter scaling

The optimal weight decay can be over 30 times higher than standard practice of
0.1, likely because our models are now larger than the data and we epoch

36

2. Regularized parameter scaling

After regularization, our loss follows clean power law scaling!

37

L = 0.05 / N1.02 + 3.43

2. Regularized parameter scaling

Our law has a model scaling exponent that is much faster than Chinchilla (1.02 vs
0.34)

38

L = 0.05 / N1.02 + 3.43

2. Regularized parameter scaling

Thanks to our scaling law, we can estimate the best possible performance under
infinite compute via the asymptote under infinite parameter count

39

L = 0.05 / N1.02 + 3.43

Aside: Sensitivity Analysis

Our asymptote estimation
seems reasonable in this case,
most likely because we are
so close to the asymptote

40

2. Regularized parameter scaling

Thanks to our scaling law, we can estimate the best possible performance under
infinite compute via the asymptote under infinite parameter count

We are excited by using asymptotes to estimate the best performance of
algorithms under infinite compute, which can hopefully anticipate the correct
algorithms for a data-constrained future!

41

3. Ensemble scaling

42

can we improve upon the parameter scaling asymptote?

3. Ensemble member scaling

Parameter scaling is only one possible limit, are there others?

We investigate ensembling: instead of training bigger models, we train multiple
models with different data orders + initializations and average logits at inference

43

3. Ensemble member scaling: better asymptotes

Increasing ensemble member count out-performs increasing parameter count!
Instead of training bigger models, it’s better to train multiple models

44

3. Ensemble member scaling: better asymptotes

We also get power law scaling for ensembles. The exponents are similar and the
asymptote is lower, making it better with infinite compute

45

3. Ensemble member scaling: why are ensembles better?

Allen-Zhu and Li, 2023 suggest data is “multi-view”, where one of many different
features correctly classifies the data, but the best performance comes from using
all the features. Parameter scaling is biased to learning only one view of the data

46

https://arxiv.org/abs/2012.09816

Ensembling alternatives

Mixture-of-Expert’s: MoE’s differentiate through the whole model and we do not
expect them to learn all the features. For example, when we try training ten
models in parallel following an ensemble architecture, it barely out-performs a
single student and is much worse than increasing ensemble members

Weight averaging: Weight averaging only works at fine-tuning since it requires
solutions to be in the same loss basin. When we try averaging our pre-trained
models, it results in random guessing loss. Moreover, distillation also allows us to
merge many members automatically for inference compute savings

47

3. Ensemble member scaling: why are ensembles better?

We find evidence for multi-view data when tuning ensemble members: we get
better asymptotes when each member is trained with more epochs and less
regularization, with each model over-fitting in a different way

48

Seed science

49

4. Composing all recipes

50

how far can we push data-efficiency with all of our recipes?

4. Composing both ensemble and parameter scaling

Previously, we were comparing parameter and ensemble scaling. However, there
is nothing that stops us from composing them. We characterize the best possible
performance of both by computing the double limit

51

4. Composing both ensemble and parameter scaling

Previously, we were comparing parameter and ensemble scaling. However, there
is nothing that stops us from composing them. We characterize the best possible
performance of both by computing the double limit

52

D tokens
N parameters
K ensemble members
H hyperparams (wd, lr, epochs)

4. Composing both ensemble and parameter scaling

Left: We first send K → ∞ for fixed N, D with hparams selected for the asymptote

53

4. Composing both ensemble and parameter scaling

Left: We first send K → ∞ for fixed N, D with hparams selected for the asymptote

Right: We then send N → ∞ for fixed D and achieve a lower asymptote of 3.17

54

4. Composing both ensemble and parameter scaling

Left: We first send K → ∞ for fixed N, D with hparams selected for the asymptote

Right: We then send N → ∞ for fixed D and achieve a lower asymptote of 3.17

55

Summary of scaling recipes at 200M tokens

56

1. Current approaches over-fit

2. Regularization has a scaling law + asymptote

3. Ensembling has a lower asymptote

4. We can compose our recipes

5. Scaling seed token count

57

do our methods only help at small scale?

5. Scaling seed token count

Do these interventions only help at 200M tokens, or do they also help at larger
token counts?

We scale up our experiments by estimating the best possible loss of epoching,
regularizing, and ensembling at each token scale. We can then measure how much
better our method is at different token scales.

58

5. Scaling seed token count

For each seed token count, we find the best possible loss of the standard recipe
and regularized recipe (asymptote)

59

5. Scaling seed token count

For each seed token count, we find the best possible loss of the standard recipe
and regularized recipe (asymptote)

60

5. Scaling seed token count

For each seed token count, we find the best possible loss of the standard recipe
and regularized recipe (asymptote)

61

5. Scaling seed token count

For each seed token count, we find the best possible loss of the standard recipe
and regularized recipe (asymptote)

62

5. Scaling seed token count

For each seed token count, we find the best possible loss of the standard recipe
and regularized recipe (asymptote)

63

5. Scaling seed token count

For ensembles, for each D, we first send K → ∞ for fixed N with hparams selected
for the asymptote.

64

5. Scaling seed token count

For ensembles, for each D, we first send K → ∞ for fixed N with hparams selected
for the asymptote.

65

5. Scaling seed token count

For ensembles, for each D, we first send K → ∞ for fixed N with hparams selected
for the asymptote.

66

5. Scaling seed token count

For ensembles, for each D, we first send K → ∞ for fixed N with hparams selected
for the asymptote.

67

5. Scaling seed token count

68

5. Scaling seed token count

Summary of best possible loss for each method at each token count

69

5. Scaling seed token count

Summary of best possible loss for each method at each token count

Baseline needs ~5 times more data to
match the performance of ensembling
at 200M tokens

70

5. Scaling seed token count

Summary of best possible loss for each method at each token count

Baseline needs ~5 times more data to
match the performance of ensembling
at 200M tokens

Asymptotes and exponents are weirdly
similar across methods, suggesting
that both methods are a constant
data-efficiency win across token scales

71

6. Distillation

72

do we need such large parameter counts at inference/training?

6. Distillation

Are the large parameter counts necessary for the final model and during training?

We find that via distillation, we can achieve data-efficiency gains without largely
increasing parameter count

73

6. Distillation algorithm

We opt for the simplest algorithm of Sequence KD [Kim and Rush, 2016]

1. Train a teacher model M’ on D tokens
2. Sample from M’ unconditionally (i.e. no prompt) to generate a dataset of D’

tokens
3. Train a student model M from scratch on the mixture of D and D’

74

https://arxiv.org/abs/1606.07947

6a. Ensemble distillation

We follow this algorithm to distill an 8-ensemble into a single model, retaining
most of the loss improvement and beating standard parameter scaling

75

6b. Self-distillation

Ensemble distillation removes ensembles at inference time. Do we need them at
train time?

At first glance, this seems unlikely assuming that student models can not
out-perform their teachers. In fact, recent works claim that training on
self-generations results in mode collapse [Dohmatob et al, 2024 ; Gerstgrasser et al,
2024 ; Shumailov et al, 2024]

76

https://arxiv.org/abs/2410.04840
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2404.01413
https://www.nature.com/articles/s41586-024-07566-y

6b. Self-distillation

Ensemble distillation removes ensembles at inference time. Do we need them at
train time?

At first glance, this seems unlikely assuming that student models can not
out-perform their teachers. In fact, recent works claim that training on
self-generations results in mode collapse [Dohmatob et al, 2024 ; Gerstgrasser et al,
2024 ; Shumailov et al, 2024]

Surprisingly, we find that self-distillation (making the student and teacher exactly
the same) improves performance!

77

https://arxiv.org/abs/2410.04840
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2404.01413
https://www.nature.com/articles/s41586-024-07566-y

6b. Self-distillation

Even though the teacher has the same architecture and parameter count as the
student, the student out-performs the teacher

78

6b. Self-distillation

Allen-Zhu and Li, 2023 suggest that self-distillation can be seen as implicitly
ensembling the trained teacher model and the fresh student model, suggesting a
connection between distillation, synthetic data, and ensembling

79

https://arxiv.org/abs/2012.09816

6b. Self-distillation

Allen-Zhu and Li, 2023 suggest that self-distillation can be seen as implicitly
ensembling the trained teacher model and the fresh student model, suggesting a
connection between distillation, synthetic data, and ensembling

Self-distillation can be seen as a form of synthetic data that doesn’t require any
human prior (prompting, reward functions, etc.) We are generally excited about
synthetic data that doesn’t require human prior

80

https://arxiv.org/abs/2012.09816

7. Downstream benefits

81

is it okay that we only looked at validation loss?

7a: Validation loss translates to downstream benchmarks

Better validation loss translates to better average performance on the small model
benchmarks of ARC Easy, PiQA, and SciQ

82

7b. Continual pre-training

Do these findings only apply to pre-training, or do they also help when adapting
pre-trained models to rare data?

We take the MegaMath-Web-Pro dataset from OctoThinker as an example of
strong reasoning data for math [Wang et al, 2025]

83

https://arxiv.org/abs/2506.20512

7b. Continual pre-training

After applying our data-efficiency tricks, we train with 4B tokens in a way that
out-performs their training with 73B tokens! This is a 17.5x data-efficiency
improvement

84

7b. Continual pre-training

After applying our data-efficiency tricks, we train with 4B tokens in a way that
out-performs their training with 73B tokens! This is a 17.5x data-efficiency
improvement (AND more compute-efficient?!)

85

8. Conclusion

86

8. Conclusion

We present some techniques (larger models, regularization, ensembling,
distillation) that result in much better loss for finite data and infinite compute

87

8. Conclusion

We present some techniques (larger models, regularization, ensembling,
distillation) that result in much better loss for finite data and infinite compute

None of the methods we propose are new: these are classic tricks when we had
limited images (MNIST, CIFAR) or sentences (Penn Tree Bank, BabyLM).
Therefore, we believe there’s tons of free lunch from rethinking basic training
decisions such as architecture [Gladstone et al, 2025], objective [Prabhudesai et al,
2025], data augmentation [Maini et al, 2024], optimizer, etc.

88

https://arxiv.org/abs/2507.02092
https://arxiv.org/abs/2507.15857
https://arxiv.org/abs/2507.15857
https://arxiv.org/abs/2401.16380

8. Conclusion

However, in the modern pre-training + generative modeling era, we believe there
may be many new algorithms that are more data-efficient at the cost of more
compute. Asymptotes will be critical to estimating which algorithms work best.

89

8. Conclusion

However, in the modern pre-training + generative modeling era, we believe there
may be many new algorithms that are more data-efficient at the cost of more
compute. Asymptotes will be critical to estimating which algorithms work best.

We are also excited to apply this general purpose toolkit to other domains such as
personalization, rare languages, agents, DNA, robotics, etc.

90

8. Conclusion

However, in the modern pre-training + generative modeling era, we believe there
may be many new algorithms that are more data-efficient at the cost of more
compute. Asymptotes will be critical to estimating which algorithms work best.

We are also excited to apply this general purpose toolkit to other domains such as
personalization, rare languages, agents, DNA, robotics, etc.

Bonus: This is a particularly great area for academics to do research as scaling
laws can extrapolate the performance at large scale with tiny experiments (most of
our iteration was done with 40M parameter models with 50M tokens)

91

