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Motivation

Language modeling works well these days, largely thanks to pre-training models 
by fitting the distribution of internet text
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Current scaling practice

Pre-training is expensive and has historically focused on training the best model 
subject to various compute constraints, resulting in predictable scaling recipes

8



Current scaling practice 

Pre-training is expensive and has historically focused on training the best model 
subject to various compute constraints, resulting in predictable scaling recipes

Example 1: Train compute
Chinchilla scaling: for a fixed compute
budget, set parameter count N and 
token count D in a 1:20 ratio with
no repetitions

9Kaplan et al, 2020 ; Hoffman et al, 2022

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2203.15556


Current scaling practice 

Pre-training is expensive and has historically focused on training the best model 
subject to various compute constraints, resulting in predictable scaling recipes

Example 2: Inference compute
To lower inference costs with small 
models, common to over-train models 
with 1:2000 parameter to token ratio

10Sardana et al, 2025, Llama, Qwen, ... 

https://arxiv.org/abs/2401.00448


Generally, current pre-training practice tells us how to 
pre-train given finite compute and as much data as needed
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Problem: running out of pre-training data

The amount of data available on the internet grows quite slowly (approximately 
3% per year), and we can not assume that we will always have access to more

12Villalobos et al, 2024

https://epoch.ai/blog/will-we-run-out-of-data-limits-of-llm-scaling-based-on-human-generated-data


Many domains are naturally data-constrained

Beyond text, many distributions genuinely have few samples
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Rare languages (i.e. 
Basque documents)

Biology (i.e. 
DNA sequences)

Agents (i.e. web navigation 
trajectories)

Personalization (i.e. 
personal information)

Robotics (i.e. 
robot trajectories)



Observation: compute continues to increase

On the other hand, compute continues to rapidly increase, with pre-training 
spending 5x more compute per year

14Villalobos et al, 2024 Sevilla and Roldán, 2024

https://epoch.ai/blog/will-we-run-out-of-data-limits-of-llm-scaling-based-on-human-generated-data
https://epoch.ai/blog/%20training-compute-of-frontier-ai-models-grows-by-4-5x-per-year


Even if current pre-training practice tells us how to best 
use limited compute for unlimited data …
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It gives little guidance on how to use compute when 
constrained by available data 
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How should one approach pre-training when 
constrained by data and unconstrained by compute?
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Pre-training under infinite compute

How should one approach pre-training when constrained by data and unconstrained by 
compute?

This is not very different from ML before the modern LLM era
- classical statistical learning analyzes algorithms with no compute constraints
- benchmarks like MNIST and Penn Tree Bank often have few samples
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Pre-training under infinite compute

How should one approach pre-training when constrained by data and unconstrained by 
compute?

This is not very different from ML before the modern LLM era
- classical statistical learning analyzes algorithms with no compute constraints
- benchmarks like MNIST and Penn Tree Bank often have few samples

However, people are really
willing to spend more compute 
to pre-train better models… 
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Pre-training under infinite compute

How should one approach pre-training when constrained by data and unconstrained by 
compute?

We revisit data efficiency with a fresh perspective from scaling laws 

We find that current approaches overfit and can not leverage more compute, even 
if it was available

We design scaling recipes that monotonically decrease loss with clean power law 
scaling. We estimate the best possible performance via the asymptote of our scaling 
laws, predicting whether this algorithm will be useful in the future
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Outline

21

1. Current approaches overfit (epoching + parameter scaling)

2, 3, 4. Designing better recipes in infinite compute utopia (regularization, ensembling, limits)

5, 6, 7. Demonstrating practicality of our interventions (data scaling, distillation, evals)



0. Setting
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0. Setting

To simulate a data-constrained future, we limit our algorithms to a small number 
of pre-training tokens (D = 200M), ablated in Section 7
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To simulate a data-constrained future, we limit our algorithms to a small number 
of pre-training tokens (D = 200M), ablated in Section 7

We use an optimized pre-training recipe (transformer, AdamW, etc) via Marin 

Since we are assuming infinite compute, we train much larger models than 
normal, defaulting to a N = 300M parameter model (30x larger than Chinchilla)

We measure validation loss as this strongly correlates with pre-training quality  
[Section 6 ; Chen et al, 2025 ; Gadre et al, 2024 ; Thrush et al, 2025]
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0. Setting

To simulate a data-constrained future, we limit our algorithms to a small number 
of pre-training tokens (D = 200M), ablated in Section 7

We use an optimized pre-training recipe (transformer, AdamW, etc) via Marin 

Since we are assuming infinite compute, we train much larger models than 
normal, defaulting to a N = 300M parameter model (30x larger than Chinchilla)

We measure validation loss as this strongly correlates with pre-training quality  
[Section 6 ; Chen et al, 2025 ; Gadre et al, 2024 ; Thrush et al, 2025]

We do not allow for any human supervision (prompting, reward functions, 
external data, external models, etc.)
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https://marin.community/
https://arxiv.org/abs/2410.08527
https://arxiv.org/abs/2403.08540
https://arxiv.org/abs/2409.05816


1. Current recipes

28

how well do existing methods handle data constraints?



1. Current recipes

We start by considering some existing data-constrained pre-training recipes such 
as repeating the data [Muennighoff et al, 2023] and increasing parameter count 
[Kaplan et al, 2020 ; Hoffman et al, 2022]
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https://arxiv.org/abs/2305.16264
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2203.15556


1a. Current recipes: epoching

If we repeat the data too many times, we start overfitting
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1b. Current recipes: epoching + parameter scaling

Increasing the parameter count isn’t very helpful, even after tuning epoch count
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1b. Current recipes: epoching + parameter scaling

Is this the best possible performance under infinite compute?
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2. Regularized parameter scaling

33

can we get stronger/monotone/clean scaling?



2. Regularized parameter scaling

We find that to get the best possible performance from these over-parameterized, 
epoched models, it is critical to regularize pre-training with much higher weight 
decay.
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2. Regularized parameter scaling

We first jointly tune learning rate, epoch count, and weight decay for each 
parameter count  by performing an expensive search for locally optimal 
hyper-parameters
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2. Regularized parameter scaling

The optimal weight decay can be over 30 times higher than standard practice of 
0.1, likely because our models are now larger than the data and we epoch
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2. Regularized parameter scaling

After regularization, our loss follows clean power law scaling!
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L = 0.05 / N1.02 + 3.43 



2. Regularized parameter scaling

Our law has a model scaling exponent that is much faster than Chinchilla (1.02 vs 
0.34)
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L = 0.05 / N1.02 + 3.43 



2. Regularized parameter scaling

Thanks to our scaling law, we can estimate the best possible performance under 
infinite compute via the asymptote under infinite parameter count
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L = 0.05 / N1.02 + 3.43 



Aside: Sensitivity Analysis

Our asymptote estimation
seems reasonable in this case, 
most likely because we are
so close to the asymptote
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2. Regularized parameter scaling

Thanks to our scaling law, we can estimate the best possible performance under 
infinite compute via the asymptote under infinite parameter count

We are excited by using asymptotes to estimate the best performance of 
algorithms under infinite compute, which can hopefully anticipate the correct 
algorithms for a data-constrained future!
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3. Ensemble scaling

42

can we improve upon the parameter scaling asymptote?



3. Ensemble member scaling

Parameter scaling is only one possible limit, are there others?

We investigate ensembling: instead of training bigger models, we train multiple 
models with different data orders + initializations and average logits at inference
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3. Ensemble member scaling: better asymptotes

Increasing ensemble member count out-performs increasing parameter count! 
Instead of training bigger models, it’s better to train multiple models 
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3. Ensemble member scaling: better asymptotes

We also get power law scaling for ensembles. The exponents are similar and the 
asymptote is lower, making it better with infinite compute
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3. Ensemble member scaling: why are ensembles better?

Allen-Zhu and Li, 2023 suggest data is “multi-view”, where one of many different 
features correctly classifies the data, but the best performance comes from using 
all the features. Parameter scaling is biased to learning only one view of the data

46

https://arxiv.org/abs/2012.09816


Ensembling alternatives

Mixture-of-Expert’s: MoE’s differentiate through the whole model and we do not 
expect them to learn all the features. For example, when we try training ten 
models in parallel following an ensemble architecture, it barely out-performs a 
single student and is much worse than increasing ensemble members

Weight averaging: Weight averaging only works at fine-tuning since it requires 
solutions to be in the same loss basin. When we try averaging our pre-trained 
models, it results in random guessing loss. Moreover, distillation also allows us to 
merge many members automatically for inference compute savings
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3. Ensemble member scaling: why are ensembles better?

We find evidence for multi-view data when tuning ensemble members: we get 
better asymptotes when each member is trained with more epochs and less 
regularization, with each model over-fitting in a different way
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Seed science
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4. Composing all recipes

50

how far can we push data-efficiency with all of our recipes?



4. Composing both ensemble and parameter scaling

Previously, we were comparing parameter and ensemble scaling. However, there 
is nothing that stops us from composing them. We characterize the best possible 
performance of both by computing the double limit
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4. Composing both ensemble and parameter scaling

Previously, we were comparing parameter and ensemble scaling. However, there 
is nothing that stops us from composing them. We characterize the best possible 
performance of both by computing the double limit
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D tokens
N parameters
K ensemble members
H hyperparams (wd, lr, epochs)



4. Composing both ensemble and parameter scaling

Left: We first send K → ∞ for fixed N, D with hparams selected for the asymptote
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4. Composing both ensemble and parameter scaling

Left: We first send K → ∞ for fixed N, D with hparams selected for the asymptote

Right: We then send N → ∞ for fixed D and achieve a lower asymptote of 3.17
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4. Composing both ensemble and parameter scaling

Left: We first send K → ∞ for fixed N, D with hparams selected for the asymptote

Right: We then send N → ∞ for fixed D and achieve a lower asymptote of 3.17
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Summary of scaling recipes at 200M tokens
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1. Current approaches over-fit

2. Regularization has a scaling law + asymptote

3. Ensembling has a lower asymptote

4. We can compose our recipes



5. Scaling seed token count

57

do our methods only help at small scale?



5. Scaling seed token count

Do these interventions only help at 200M tokens, or do they also help at larger 
token counts?

We scale up our experiments by estimating the best possible loss of epoching, 
regularizing, and ensembling at each token scale. We can then measure how much 
better our method is at different token scales.
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5. Scaling seed token count

For each seed token count, we find the best possible loss of the standard recipe 
and regularized recipe (asymptote)

59



5. Scaling seed token count

For each seed token count, we find the best possible loss of the standard recipe 
and regularized recipe (asymptote)

60



5. Scaling seed token count

For each seed token count, we find the best possible loss of the standard recipe 
and regularized recipe (asymptote)

61



5. Scaling seed token count

For each seed token count, we find the best possible loss of the standard recipe 
and regularized recipe (asymptote)

62



5. Scaling seed token count

For each seed token count, we find the best possible loss of the standard recipe 
and regularized recipe (asymptote)

63



5. Scaling seed token count

For ensembles, for each D, we first send K → ∞ for fixed N with hparams selected 
for the asymptote.
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5. Scaling seed token count
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5. Scaling seed token count

Summary of best possible loss for each method at each token count

69



5. Scaling seed token count

Summary of best possible loss for each method at each token count

Baseline needs ~5 times more data to
match the performance of ensembling
at 200M tokens
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5. Scaling seed token count

Summary of best possible loss for each method at each token count

Baseline needs ~5 times more data to
match the performance of ensembling
at 200M tokens

Asymptotes and exponents are weirdly
similar across methods, suggesting
that both methods are a constant
data-efficiency win across token scales
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6. Distillation

72

do we need such large parameter counts at inference/training?



6. Distillation

Are the large parameter counts necessary for the final model and during training?

We find that via distillation, we can achieve data-efficiency gains without largely 
increasing parameter count
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6. Distillation algorithm

We opt for the simplest algorithm of Sequence KD [Kim and Rush, 2016]

1. Train a teacher model M’ on D tokens
2. Sample from M’ unconditionally (i.e. no prompt) to generate a dataset of D’ 

tokens
3. Train a student model M from scratch on the mixture of D and D’
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https://arxiv.org/abs/1606.07947


6a. Ensemble distillation

We follow this algorithm to distill an 8-ensemble into a single model, retaining 
most of the loss improvement and beating standard parameter scaling
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6b. Self-distillation

Ensemble distillation removes ensembles at inference time. Do we need them at 
train time?

At first glance, this seems unlikely assuming that student models can not 
out-perform their teachers. In fact, recent works claim that training on 
self-generations results in mode collapse [Dohmatob et al, 2024 ; Gerstgrasser et al, 
2024 ; Shumailov et al, 2024]

76

https://arxiv.org/abs/2410.04840
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2404.01413
https://www.nature.com/articles/s41586-024-07566-y


6b. Self-distillation

Ensemble distillation removes ensembles at inference time. Do we need them at 
train time?

At first glance, this seems unlikely assuming that student models can not 
out-perform their teachers. In fact, recent works claim that training on 
self-generations results in mode collapse [Dohmatob et al, 2024 ; Gerstgrasser et al, 
2024 ; Shumailov et al, 2024]

Surprisingly, we find that self-distillation (making the student and teacher exactly 
the same) improves performance!
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https://arxiv.org/abs/2410.04840
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2404.01413
https://www.nature.com/articles/s41586-024-07566-y


6b. Self-distillation

Even though the teacher has the same architecture and parameter count as the 
student, the student out-performs the teacher
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6b. Self-distillation

Allen-Zhu and Li, 2023 suggest that self-distillation can be seen as implicitly 
ensembling the trained teacher model and the fresh student model, suggesting a 
connection between distillation, synthetic data, and ensembling

79
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6b. Self-distillation

Allen-Zhu and Li, 2023 suggest that self-distillation can be seen as implicitly 
ensembling the trained teacher model and the fresh student model, suggesting a 
connection between distillation, synthetic data, and ensembling

Self-distillation can be seen as a form of synthetic data that doesn’t require any 
human prior (prompting, reward functions, etc.) We are generally excited about 
synthetic data that doesn’t require human prior
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https://arxiv.org/abs/2012.09816


7. Downstream benefits

81

is it okay that we only looked at validation loss?



7a: Validation loss translates to downstream benchmarks

Better validation loss translates to better average performance on the small model 
benchmarks of ARC Easy, PiQA, and SciQ
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7b. Continual pre-training

Do these findings only apply to pre-training, or do they also help when adapting 
pre-trained models to rare data?

We take the MegaMath-Web-Pro dataset from OctoThinker as an example of 
strong reasoning data for math [Wang et al, 2025]
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https://arxiv.org/abs/2506.20512


7b. Continual pre-training

After applying our data-efficiency tricks, we train with 4B tokens in a way that 
out-performs their training with 73B tokens! This is a 17.5x data-efficiency 
improvement
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7b. Continual pre-training

After applying our data-efficiency tricks, we train with 4B tokens in a way that 
out-performs their training with 73B tokens! This is a 17.5x data-efficiency 
improvement (AND more compute-efficient?!)
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8. Conclusion
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8. Conclusion

We present some techniques (larger models, regularization, ensembling, 
distillation) that result in much better loss for finite data and infinite compute
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8. Conclusion

We present some techniques (larger models, regularization, ensembling, 
distillation) that result in much better loss for finite data and infinite compute

None of the methods we propose are new: these are classic tricks when we had 
limited images (MNIST, CIFAR) or sentences (Penn Tree Bank, BabyLM). 
Therefore, we believe there’s tons of free lunch from rethinking basic training 
decisions such as architecture [Gladstone et al, 2025], objective [Prabhudesai et al, 
2025], data augmentation [Maini et al, 2024], optimizer, etc.
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https://arxiv.org/abs/2507.02092
https://arxiv.org/abs/2507.15857
https://arxiv.org/abs/2507.15857
https://arxiv.org/abs/2401.16380


8. Conclusion

However, in the modern pre-training + generative modeling era, we believe there 
may be many new algorithms that are more data-efficient at the cost of more 
compute. Asymptotes will be critical to estimating which algorithms work best. 
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8. Conclusion

However, in the modern pre-training + generative modeling era, we believe there 
may be many new algorithms that are more data-efficient at the cost of more 
compute. Asymptotes will be critical to estimating which algorithms work best. 

We are also excited to apply this general purpose toolkit to other domains such as 
personalization, rare languages, agents, DNA, robotics, etc.

Bonus: This is a particularly great area for academics to do research as scaling 
laws can extrapolate the performance at large scale with tiny experiments (most of 
our iteration was done with 40M parameter models with 50M tokens)
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